The tree of a Non-Archimedean hyperbolic plane

YGGT 2021, Raphael Appenzeller

Start with ordered field \mathbb{R}

hyperbolic plane

Start with non-Archimedean ordered field $\mathbb{R}(\varepsilon)$,

where $\varepsilon > 0$ such that

$$\forall x \in \mathbb{R}_{>0} \colon \varepsilon < x$$

tree

As a set

 \mathbb{R}

$$\mathbb{H}^2 = \left\{ (x, y) \in \mathbb{R}^2 \colon \sqrt{x^2 + y^2} < 1 \right\}$$

 $\mathbb{R}(\varepsilon)$ \sim Euclidean closure $\mathbb{R}(\varepsilon)$

$$\mathbb{H}^2 = \left\{ (x,y) \in \mathbb{R}^2 \colon \sqrt{x^2 + y^2} < 1 \right\} \qquad \mathbb{H}^2_{\varepsilon} = \left\{ (x,y) \in \overline{\mathbb{R}(\varepsilon)^2} \colon \sqrt{x^2 + y^2} < 1 \right\}$$

As a metric space

 $\mathbb{R}(arepsilon)$

Crossratio: cr(A, B) Valuation $v: \mathbb{R}(\varepsilon) \to \mathbb{R}$

$$d(A, B) := \log \operatorname{cr}(A, B)$$

 $d_{\varepsilon}(A,B) := v \operatorname{cr}(A,B)$

Prop: (\mathbb{H}^2, d) is a metric space.

Prop: $(\mathbb{H}^2_{\varepsilon}, d_{\varepsilon})$ is a semi-metric space.

Cor: $(\mathbb{H}^2_{\varepsilon}/\sim, d_{\varepsilon})$ is a metric space.

 \mathbb{H}^2 is the hyperbolic plane.

How triangles look like

Prop: $\mathbb{H}^2_{\varepsilon}/\sim$ is a \mathbb{R} -tree.

Thanks for your attention!

Source: G. W. Brumfiel, *The tree of a Non-Archimedean hyperbolic plane*, Contemporary Mathematics, Volume **74**, 1988.